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Abstract

This paper concerned with the relation of the bending moment to the bending curvature during bending of carbon

nanotubes, and the relation between the rippling formation and the bending modulus. Based on the three-dimensional

orthotropic theory of finite elasticity deformation, a non-linear bending moment–curvature relationship of carbon

nanotubes which is the appearance of wavelike distortion on the inner arc of the bent nanotubes is simulated by using

an advanced finite element analysis package, ABAQUS. Utilizing the non-linear bending moment–curvature

relationship, the effective bending modulus of carbon nanotubes with different cross-sections are obtained by means of a

bi-linear theory and a simplified vibration analysis method. The effective bending modulus of carbon nanotubes sim-

ulated in the paper is close to the measuring result presented in reference [Science 283 (1999) 1513].
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1. Introduction

Since their initial discovery by Iijima (1991), carbon nanotubes have come under ever increasing sci-

entific scrutiny. The studies showed that carbon nanotubes exhibit superior mechanical properties over any
known material. For instance, it was reported that carbon nanotubes appear in exceptionally high elastic

modulus (higher than 1 TPa), and sustain large elastic strain (up to 5%) and breaking strain (up to 20%)

(Iijima, 1991), they are also remarkably flexible in bending and can undergo large elastic deformation

without breaking (Avouris et al., 1999; Dresselhaus et al., 2001; Yang et al., 2002). With these distin-

guishing properties, carbon nanotubes exhibit new phenomena, one of which is the formation of ripples

when carbon nanotubes are under bending load (Treacy et al., 1996; Poncharal et al., 1999).
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Their potential applications have led to many investigations on measurements of mechanical properties

of carbon nanotubes, by means of various techniques such as transmission electron microscopy (TEM) and

atomic force microscopy (AFM). One good method of measurement used by Poncharal et al. (1999) is to

measure the fundamental resonance included by an electric field in TEM and then calculate effective
bending modulus Eeff by using the relation between resonance and modulus resulting from the linear

vibration analysis of cantilevered beams. However, the result of measurement reported that the calculated

effective bending modulus Eeff was found to decrease sharply, from about 1 to 0.1 TPa with the diameter D
of carbon nanotubes increasing from 8 to 40 nm. This discovery defies usual belief that the elastic modulus

is a material’s intrinsic property, independent of the size of the nanotubes. Treacy et al. (1996) obtained an

effective bending modulus Eeff of 1.8 TPa (average value) for multi-walled nanotubes, and Krishnan et al.

(1998) obtained an effective bending modulus Eeff of 1.25 ()0.35/+0.45) TPa for single-walled nanotubes.

Another approach is to use the tip of an AFM to bend anchored carbon nanotubes while simultaneously
recording the force exerted by the tube as a function of the displacement from its equilibrium position.

Then one can extract the effective bending modulus Eeff based on the elementary beam theory. Following

this approach, Wong et al. (1997) obtained an effective bending modulus Eeff of 1.28 ± 0.5 TPa for multi-

walled carbon nanotubes. It is a pity that all of the above measurements are indirect because the small

dimension of nanotubes has made it extremely difficult to exactly measure their mechanical properties

directly (Ebbesen, 1996). Thus it is also valuable to seek a numerical simulation method of obtaining the

mechanical properties of carbon nanotubes.

A numerical simulation of materials of nanoscale size should use molecular dynamics (MD) method to
consider the nanoeffects and to give an accurate solution. However, MD simulation is limited to systems

with a maximum atom number of about 109 by the scale and cost of computation. So only single-walled

nanotubes with small deflection can be simulated using MD method. Existing work shows that results from

continuum mechanics agree with MD simulation results for single and double wall tubes. For examples,

Yakobson et al. (1996) compared the results of atomistic modeling for axially compressed buckling of

single-walled nanotubes with a simple continuum shell model, and found that all the buckling patterns

displayed by MD simulation can also be predicted by the continuum shell model, and Antonio et al. (2004)

presented some results demonstrate that the proposed continuum/FE technique could provide a valuable,
easy-to-use and widely accessible tool for studying the mechanical behavior of carbon nanotubes. So FEM

of a continuum model may be adopted to model molecular structures at the nanotube level.

Zheng and Jiang (2001) constructed a two-dimensional plane strain FEM model of a beam with rect-

angular across section under pure bending and obtained a bending moment–curvature relationship. But

this model did not take into account the dimensional Poisson effect. Moreover, the material orientation of

the model varies from carbon nanotubes, which are axially symmetric. A beam model with round cross-

section of three dimensions have constructed, and a bending moment–curvature relationship, which is more

likely to be the truly bending constitution of carbon nanotubes have obtained by using an advanced finite
element analysis package, ABAQUS. Thus the effective bending moduli for carbon nanotubes with different

cross-sections are obtained by means of using a bi-linear theory. The result carried out in the paper is

consistent with the measuring result in reference (Poncharal et al., 1999).
2. Numerical simulation of rippling deformation mode

Based on three structures of carbon nanotubes arising from the folding of one layer or more layers of

graphite to form a cylinder composed of carbon hexagons (Rao et al., 2001), we can utilize the stress–strain

relationship of graphite to express the constitution of carbon nanotubes with an appropriate orientation.
The experiments up to now do indicate that the axial elasticity modulus of carbon nanotubes is close to the
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elasticity modulus along the basal plane of graphite (Krishnan et al., 1998). To better express the material’s

main direction of carbon nanotubes, the constitution in a cylindrical coordinate system is represented as
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In experiments the length-to-diameter ratio of carbon nanotubes is about 500. The loading condition is a

concentrate force exerted at the free end of cantilever beam. The shearing effect for this kind of beam can be

omitted based on solid mechanics theory, which belongs to purely bending model. Once the bending

moment–curvature relationship for purely bending, which contains all the information of non-linearity, is

obtained, the deformation and vibration of the cantilever beams can be analyzed without having to conduct

an FEM simulation for each cantilever beam. Even so, because of the small size of elements aiming to

characterize the rippling deformation, non-linear geometrical deformation and the time-consuming of

computation, the length-to-diameter ratio should be kept to a suitable value. But there is a lowest limit,
because the period of the rippling, namely, the length of each wave, is relation to the cross-sectional

dimensions. This will vary to accommodate to ratio D=L, where D and L represent, respectively, the outer

radius and the length of nanotubes, and affect the bending moment–curvature relationship. A ratio to

contain enough waves in the deformation portion of beam should be determined, so that the length of the

beam can be approximately taken as an integer multiple of the rippling period. Referring to the rippling

period observed with high-resolution TEM (Poncharal et al., 1999) and the result of previous work (Zheng

and Jiang, 2001), a rectangular cross-beam of length-to-height ratio L=h of 10:1 is chosen to simulate the

rippling deformation of carbon nanotubes. In the paper it is assumed that carbon nanotubes with various
inner radii di can be simulated using hollow cylindrical model or solid cylindrical model with the equative

outer radius D.
The characteristic length of the bending portion of the beam between the two simply supported con-

straints is taken as L, and the bending curvature is taken as j.
Using the same aspect ratio (L=D ¼ 500) as that of experimental samples (Poncharal et al., 1999) to

performing the finite element analysis is extremely challenging because the elements in finite element mesh

must have dimensions significantly smaller than the spatial period of rippling. However, theoretically,

under the pure bending condition the bending moment on each cross-section is the same and the beam’s
neutral axis has a constant curvature. Thus, a beam with smaller aspect ratio (L=D � 500) can be used to

simulate the rippling deformation of the beam under the pure bending condition. It should be pointed out

that in the FEM numerical simulation the exact application of the boundary condition of the beam sub-

jected to pure bending is very important, due to the rotation and the changing unknown stress distribution

of the ending sections. An approach is to construct a four-point bending beam, as shown in Fig. 1.
L 

D 

Fig. 1. Three-dimensional FEM calculating models for purely bending nanotubes.
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A commercial finite element code ABAQUS is used to simulate the rippling formation of bent nanotubes. It

can automatically choose proper loading increments and converge criteria in a non-linear analysis.

Fig. 2(a) shows the undeformed mesh of solid cylindrical model for carbon nanotubes, Fig. 2(b) shows

the configuration of a simulated this carbon nanotubes bent with the rippling deformation which is similar
to overall view of a bending carbon nanotubes with ripples carried out by means of a measuring method

(Poncharal et al., 1999).

In order to minimize the sensitivity of numerical solution to the characteristic length of the selected

purely bending portion by varying the aspect ratio we plot in Fig. 3 the bending moment M versus the

bending curvature j at each loading step for the four-point bending solid cylinder with the length-to-

diameter ratios L=D ¼ 10, and 20. It is seen from Fig. 3 that the calculating results for the two different

dimensions of purely bending portion of the four-point bending solid cylinder models are approximate

coincidence so that in the following finite element simulation the length-to-diameter ratios L=D of purely
bending portion may be taken as 10 in order to decrease the calculating time.

From Fig. 3, it is seen that the bending stiffness of a carbon nanotube sharply reduces from the EI value
as it is bent into the rippling mode. Because the reduced bending stiffness doses not change significantly, the

bending moment–curvature relationship can be simplified as a bi-linear function.

Fitting the discrete data in Fig. 3 with bi-linear functions gives
Fig. 2.

ripplin
M ¼ EIj as 06j6 1:36%
e1EIjþ e2 as j > 1:36%

�
ð2aÞ
FEM model of carbon nanotubes and the rippling configuration. (a) The undeformed mesh of the purely bending part, (b) The

g deformed shape of the bent carbon nanotubes from FEM simulation.



Fig. 3. Two results derived from different ratios to D=L, where (j) represents L=D ¼ 10, (�) represents L=D ¼ 20.
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with e1 ¼ 0:0684, e2 ¼ 0:898� 109 Nm, where E ¼ 1:02� 1012 GPa is the axial engineering elastic constant

derived from the Young’s modulus of the graphite base plane.

In fact, the dimensionless curvature Dj has an obvious physical meaning which expresses two times the

maximum normal strain emax when the beam is bent in the linear mode. So, when non-linear mode appear

the above function gives the critical strain
ecr ¼ 0:0136D=2 ð2bÞ
3. A bending experiment method of nanotubes

Based on that all the electrostatic force is exerted at the free end of the carbon nanotubes (Poncharal
et al., 1999), the load applied on the cantilever beam is written as
F ðx; tÞ ¼ PðtÞdðx� LÞ ð3Þ
where a concentrate force P ðtÞ is exerted at the location x ¼ L.
Because the surface work function of carbon nanotubes is different from that of the counter electrode,

they will interact and bear a certain amount of static charge even when no voltage is applied between the

carbon nanotubes and the counter electrode. Suppose the net charge of carbon nanotubes is q0, which
neutralizes the difference of the surface work function. This net charge can be eliminated by applying a bias

voltage �DV , with DV ¼ q0=a, where a is the proportional constant between the induced charge (with the

exclusion of q0) and the applied voltage. When a time dependent voltage V ðtÞ ¼ Vs þ Vd cosðxtÞ is applied,
the charge at the free end of the carbon nanotubes is q ¼ q0 þ aV ðtÞ ¼ a½DV þ V ðtÞ�, and the intensity of the

electric field there is E ¼ b½DV þ V ðtÞ�, so the electric force exerted on the carbon nanotubes is
P ðtÞ ¼ Eq ¼ ab½DV þ V ðtÞ�2, where a and b are proportional constants relevant to the carbon nanotubes

under investigation. Substituting the expression of V ðtÞ into that function, gives
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P ðtÞ ¼ ab½DV þ Vs þ Vd cosðxtÞ�2

¼ ab½ðDV þ VsÞ2 þ 2ðDV þ VsÞVd cosðxtÞ þ ð1=2ÞV 2
d cosð2xtÞ þ ð1=2ÞV 2

d � ð4Þ
From the above expression, it can be seen that static load P0 and periodical load P1ðtÞ in Eq. (4) are,

respectively, expressed as
P0 ¼ ab½ðDV þ VsÞ2 þ ð1=2ÞV 2
d � ð5aÞ

P1ðtÞ ¼ ab½2ðDV þ VsÞVd cosðxtÞ þ ð1=2ÞVd2 cosð2xtÞ� ð5bÞ
In a linear vibration the stimulation with frequency being x and 2x in P1ðtÞ are analyzed respectively, and

their response are superimposed. Since ðDV þ VsÞ=Vd � 1 in the experiment, there are
P0 � ab½ðDV þ VsÞ2� ð6aÞ

P1ðtÞ � ab½2ðDV þ VsÞVd cosðxtÞ� ð6bÞ

where P0 � P1ðtÞ.

The beam undergoes a static deformation of bending when P0 is exerted on it, and part of the beam has

entered the rippling mode. P1ðtÞ cause the beam to vibrate. Suppose that the interface between the rippling

and un-rippling parts is at x ¼ L1, where L1 is determined by
emax ¼
D
2

P0ðL� L1Þ
EI

¼ ecr ð7Þ
where D expresses the diameter of carbon nanotubes, and the critical strain ecr for rippling is given in Eq.

(2b). Solving Eq. (7) gives
L1 ¼ L� 2ecrEI
DP0

ð8aÞ

L2 ¼
2ecrEI
DP0

ð8bÞ
where L2 ¼ L� L1:

The rippling part of the beam appears in 06 x6 L1, and the un-rippling part appears in L1 < x6 L. These
two parts will observe dM

dj ¼ e1EI and dM
dj ¼ EI respectively. Because P1ðtÞ cause the whole beam to vibrate,

the interface between the two parts oscillates around x ¼ L1, which means that the lengths of the two parts

appears in fluctuating. However, because the dynamic deformation is small compare to the static defor-

mation, and the effects of positive fluctuation and negative fluctuation in a period on the frequency of

vibration can counteract to some extent, the vibration analysis for a beam with two parts of constant
lengths having different bending stiffness can be adopted.

According to the experiment (Poncharal et al., 1999), it is assumed that the ratio of the displacement of

the free end of the cantilever beam caused by P0 ðwmaxÞ to the beam length L is a constant
wmax

L
¼ CF ð9Þ
Considering that CF approximately equals 30% (Poncharal et al., 1999) and from material’s mechanics

theory the displacement of the free end of the cantilever beam is given by
wmax ¼
P0
EI

1
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Solving Eq. (7) yields
P0 ¼
2EIecr
DL2

ð11Þ
Substituting Eq. (1) into Eq. (10), and dividing both sides of the equation by L, gives
wmax

L
¼ 2ecr

DL
1

e1

L3
1

3L2

��
þ L2

1 þ L1L2

�
þ L2

2

3

�
¼ 2ecr

D=L
1

e1

L3
1

3L2L2

��
þ L2

1

L2
þ L1L2

L2

�
þ L2

2

3L2

�

¼ 2ecr
D=L

1

e1

k3

3ð1� kÞ

�"
þ k2 þ kð1� kÞ

�
þ ð1� kÞ2

3

#
¼ 2ecr

D=L
k33k2 þ 3k þ a1ð1� kÞ3

3e1ð1� kÞ ¼ CF ð12Þ
where L2
L1
¼ 1�k

k .

The above equation indicates that the quotient of the rippling part in the model k ¼ L1=L is only

determined by the geometric parameter of the beam D=L. Once the value of D=L is given, k in the above

equation can be easily obtained.
4. Bending vibration theory of beam

According to the bi-linear constitution relationship simulated shown in Fig. 3 and the vibration theory

of beam the bending vibration equation of beam is separated into two parts
e1EI
o4w1ðx; tÞ

o4x
þ qA

o2w1ðx; tÞ
o2t

¼ 0 ð06 x6 L1Þ ð13aÞ

EI
o4w2ðx; tÞ

o4x
þ qA

o2w2ðx; tÞ
o2t

¼ P1ðtÞdðx� LÞ ðL1 6 x6 LÞ ð13bÞ
where subscriptions 1 and 2 represent the bending equilibrium equations of the rippling and un-rippling

parts of the beam. Boundary conditions and continuous conditions of the cantilever beam are, respectively,
w1 ¼ ow1=ox ¼ 0; at x ¼ 0

o2w2

o2x
¼ o3w2

o3x
¼ 0; at x ¼ L

w1 ¼ w2; ow1=ox ¼ ow2=ox

o2w1

o2x
¼ o2w2

o2x
;

o3w1

o3x
¼ o3w2

o3x
; at x ¼ L1 ð14Þ
Assuming the homogeneous solutions of Eq. (13) are, respectively, written as
w1ðx; tÞ ¼ /1ðxÞq1ðtÞ ð06 x6 L1Þ ð15aÞ

w2ðx; tÞ ¼ /2ðxÞq2ðtÞ ðL6 x6 LÞ ð15bÞ

where
/1ðxÞ ¼ C1 sinhðb1xÞ þ C2 coshðb1xÞ þ C3 cosðb1xÞ þ C4 sinðb1xÞ ð16Þ

expresses the mode function of rippling deformation, and
/2ðxÞ ¼ C5 sinhðb2xÞ þ C6 coshðb2xÞ þ C7 cosðb2xÞ þ C8 sinðb2xÞ ð17Þ
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expresses the mode function of non-rippling deformation. In the above formula,
b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA
e1EI

x24

r
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
qA
EI

x2
4

r
ð18Þ
Assume that a new coordinate system is expressed as
x1 ¼ x ð06 x6 L1 and 06 x1 6 L1Þ

x2 ¼ x� L1 ðL1 6 x6L and 06 x2 6 L2Þ ð19Þ

Under the coordinate system (19), and substituting Eq. (15) into the boundary condition and the contin-

uous condition (14) yields
/1ðL1Þ ¼ /2ð0Þ; /0
1ðL1Þ ¼ /0ð0Þ2

e1/
00
1ðL1Þ ¼ /00

2ð0Þ; e1/
000
1 ðL1Þ ¼ /000

2 ð0Þ
/1ð0Þ ¼ /0

1ð0Þ ¼ 0; /00
2ðL2Þ ¼ /000

2 ðL2Þ ¼ 0

ð20Þ
Substituting Eqs. (16) and (17) into Eq. (20) leads to a set of algebraic equations.
C2 þ C3 ¼ 0

C1 þ C4 ¼ 0

C5shb2L2 þ C6chb2L2 � C7 cos b2L2 � C8 sin b2L2 ¼ 0

C5chb2L2 þ C6shb2L2 þ C7 sin b2L2 � C8 cos b2L2 ¼ 0

C1shb1L1 þ C2chb1L1 þ C3 cos b1L1 þ C4 sin b1L1 ¼ C6 þ C7

b1ðC1chb1L1 þ C2shb1L1 � C3 sin b1L1 þ C4 cos b1L1Þ ¼ b2ðC5 þ C8Þ
e1b

2
1ðC1shb1L1 þ C2chb1L1 � C3 cos b1L1 � C4 sin b1L1Þ ¼ b2

2ðC6 � C7Þ
e1b

3
1ðC1chb1L1 þ C2shb1L1 þ C3 sin b1L1 � C4 cos b1L1Þ ¼ b3

2ðC5 � C8Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ
In order to get non-zero solutions for the above equation, making the coefficient matrix of Eq. (21) be zero,

gives
½coshðX Þ coshðX Þ � 1�½coshðY Þ cosðY Þ � 1� þ e1½coshðX Þ coshðX Þ þ 1�½coshðY Þ cosðY Þ þ 1�

þ e
3
4

1½coshðY Þ sinðY Þ þ sinhðY Þ cosðY Þ�½sinhðX Þ cosðX Þ � coshðX Þ sinðX Þ� þ e
1
4

1½coshðX Þ sinðX Þ

þ sinhðX Þ cosðX Þ�½sinhðY Þ cosðY Þ � coshðY Þ sinðY Þ� � 2e
1
2

1 sinhðX Þ sinðX Þ sinhðY Þ sinðY Þ
¼ 0 ð22Þ
where X ¼ b1L1, Y ¼ b2L2 . It is noted that Eq. (22) involves two dimensionless undetermined parameters,

X and Y . From Eq. (8) and Eq. (18) we have
X ¼ b1L1

b2L2

¼ 3CFD=L� 2ecr

2ecre
1=4
1

Y ð23Þ
Substituting Eq. (23) into Eq. (22), the minimum real root of Eq. (22) is given by
Y1 ¼ b21L2 ð24Þ

Substituting b21 into Eq. (18), the basic frequency of the cantilever beam is written as
x1 ¼ b2
21

ffiffiffiffiffiffiffiffiffi
Eeff I
qA

s
¼ Y 2

1

L2
2

ffiffiffiffiffiffiffiffiffi
Eeff I
qA

s
ð25Þ
where Eeff expresses an equivalent bending modulus.
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From a linear vibration theory, the basic frequency of the cantilever beam may be written as
Fig. 4.

from th

modul
xl
1 ¼

ðbl
1LÞ

2

L2

ffiffiffiffiffiffi
EI
qA

s
¼ 1:8752

L2

ffiffiffiffiffiffi
EI
qA

s
ð26Þ
where b1L is the minimum real root of the characteristic equation which is expressed as
cosðb1LÞ coshðb1LÞ þ 1 ¼ 0 ð27Þ
Using Eqs. (25) and (26), we have
Eeff

E
x1

xl
1

� �2

¼ Y1
1:875

3CFD=L
2ecr

� �4

ð28Þ
From Eqs. (8a) and (2b), when non-rippling deformation appears on the beam ðL1 ¼ 0Þ, we have
D=L ¼ 2ecr
3CF

¼ 2� 0:0136D=2
3� 30%

¼ 0:0151D ð29Þ
When D=L < 0:0151D, the beam completely appears in the linear M–j relationship. Substituting a series of

values D=L > 0:0151D into Eq. (22) gives the relation between the effective modulus Eeff and D=L shown as

the curve A in Fig. 4.

On the other hand, utilizing Microcal Origin Code, we simulate the curve A in Fig. 4 with a simple

function describing relationship between the effective modulus Eeff and D=L when rippling deformation

appear on the bending beam, which is given by
Eeff

E
¼ 0:05949þ 5� 10�5

D
L � 0:01305

� �1:21684 ð30Þ
Curve A expresses the relationship between diameter-to-length D=L and effective bending modulus Eeff=E of carbon nanotubes

ree-dimension solid circle section model. Curve B expresses the relationship between height-to-length h=L and effective bending

us Eeff=E of carbon nanotubes from two-dimension rectangular section beam.
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5. Conclusions

From the curve A in Fig. 4, it is seen that when the length of the carbon nanotubes is a constant, its

effective bending modulus carried out according to the bi-linear deformation theory does decrease with
the diameter of the carbon nanotubes increasing. The distribution of the data points from the curve A in

Fig. 4 is closed to that of the Eeff=E � D graph derived from experiment in reference (Poncharal et al.,

1999).

Fig. 4 shows a comparison between the Eeff=E � D=L relationship in this paper and the result from the

FEM model of which is a square-cross-sectioned beam with the height being h in reference (Zheng and

Jiang, 2001). In the comparison, to make the cross-sections of the two models have an equal inertial

moment a value to the diameter of circle-sectioned beam in the paper is given by
Fig. 5.

from t

modul
pD4

64
¼ bh3

12
ð31Þ
It is seen from Fig. 4 that although the two curves are similar, the result in this paper gives a lower value

for Eeff=E with D=L increasing, which is more closer the Eeff=E � D graph derived from experiment

(Poncharal et al., 1999) than the two-dimensional model (Zheng and Jiang, 2001). Thus, it is concluded that
the three-dimensional model used in this paper is more suitable to simulate the effective bending modulus of

carbon nanotubes with rippling deformation than the two-dimensional model in reference (Zheng and

Jiang, 2001).

In order to further describe the effect of FEM model on numerical simulation of the effective bending

modulus of carbon nanotubes with rippling deformation, a hollow circle section is used to simulate

the effective bending modulus of carbon nanotubes with rippling deformation. Similar to Eq. (31), the

geometrical sizes of hollow circle section is given by
D4
1 � d4 ¼ D4 ð32Þ
Curve A expresses the relationship between diameter-to-length D=L and effective bending modulus Eeff=E of carbon nanotubes

hree-dimension solid circle section model. Curve B expresses the relationship between height-to-length h=L and effective bending

us Eeff=E of carbon nanotubes from three-dimension hollow circle section model.
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where D presents the outer radii of the solid circle section, D1 presents the out radii of the hollow circle

section and d ¼ D1=2 presents the internal radii of the hollow circle section.

Fig. 5 shows the distributions of the effective bending modulus of carbon nanotubes with rippling

deformation for two kinds of sections model with identical dimensions and inertial moment. It is seen that
the distributions of the two effective bending moduli of carbon nanotubes with rippling are approach. It

further proves that the circle section used to simulate the effective bending modulus of carbon nanotubes is

suitable.
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