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Abstract

This paper concerned with the relation of the bending moment to the bending curvature during bending of carbon
nanotubes, and the relation between the rippling formation and the bending modulus. Based on the three-dimensional
orthotropic theory of finite elasticity deformation, a non-linear bending moment—curvature relationship of carbon
nanotubes which is the appearance of wavelike distortion on the inner arc of the bent nanotubes is simulated by using
an advanced finite element analysis package, ABAQUS. Utilizing the non-linear bending moment—curvature
relationship, the effective bending modulus of carbon nanotubes with different cross-sections are obtained by means of a
bi-linear theory and a simplified vibration analysis method. The effective bending modulus of carbon nanotubes sim-
ulated in the paper is close to the measuring result presented in reference [Science 283 (1999) 1513].
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since their initial discovery by Iijima (1991), carbon nanotubes have come under ever increasing sci-
entific scrutiny. The studies showed that carbon nanotubes exhibit superior mechanical properties over any
known material. For instance, it was reported that carbon nanotubes appear in exceptionally high elastic
modulus (higher than 1 TPa), and sustain large elastic strain (up to 5%) and breaking strain (up to 20%)
(Iijima, 1991), they are also remarkably flexible in bending and can undergo large elastic deformation
without breaking (Avouris et al., 1999; Dresselhaus et al., 2001; Yang et al., 2002). With these distin-
guishing properties, carbon nanotubes exhibit new phenomena, one of which is the formation of ripples
when carbon nanotubes are under bending load (Treacy et al., 1996; Poncharal et al., 1999).
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Their potential applications have led to many investigations on measurements of mechanical properties
of carbon nanotubes, by means of various techniques such as transmission electron microscopy (TEM) and
atomic force microscopy (AFM). One good method of measurement used by Poncharal et al. (1999) is to
measure the fundamental resonance included by an electric field in TEM and then calculate effective
bending modulus E.; by using the relation between resonance and modulus resulting from the linear
vibration analysis of cantilevered beams. However, the result of measurement reported that the calculated
effective bending modulus E.; was found to decrease sharply, from about 1 to 0.1 TPa with the diameter D
of carbon nanotubes increasing from 8 to 40 nm. This discovery defies usual belief that the elastic modulus
is a material’s intrinsic property, independent of the size of the nanotubes. Treacy et al. (1996) obtained an
effective bending modulus E.; of 1.8 TPa (average value) for multi-walled nanotubes, and Krishnan et al.
(1998) obtained an effective bending modulus E of 1.25 (—0.35/+0.45) TPa for single-walled nanotubes.
Another approach is to use the tip of an AFM to bend anchored carbon nanotubes while simultaneously
recording the force exerted by the tube as a function of the displacement from its equilibrium position.
Then one can extract the effective bending modulus E.r based on the elementary beam theory. Following
this approach, Wong et al. (1997) obtained an effective bending modulus E.r of 1.28 £0.5 TPa for multi-
walled carbon nanotubes. It is a pity that all of the above measurements are indirect because the small
dimension of nanotubes has made it extremely difficult to exactly measure their mechanical properties
directly (Ebbesen, 1996). Thus it is also valuable to seek a numerical simulation method of obtaining the
mechanical properties of carbon nanotubes.

A numerical simulation of materials of nanoscale size should use molecular dynamics (MD) method to
consider the nanoeffects and to give an accurate solution. However, MD simulation is limited to systems
with a maximum atom number of about 10° by the scale and cost of computation. So only single-walled
nanotubes with small deflection can be simulated using MD method. Existing work shows that results from
continuum mechanics agree with MD simulation results for single and double wall tubes. For examples,
Yakobson et al. (1996) compared the results of atomistic modeling for axially compressed buckling of
single-walled nanotubes with a simple continuum shell model, and found that all the buckling patterns
displayed by MD simulation can also be predicted by the continuum shell model, and Antonio et al. (2004)
presented some results demonstrate that the proposed continuum/FE technique could provide a valuable,
easy-to-use and widely accessible tool for studying the mechanical behavior of carbon nanotubes. So FEM
of a continuum model may be adopted to model molecular structures at the nanotube level.

Zheng and Jiang (2001) constructed a two-dimensional plane strain FEM model of a beam with rect-
angular across section under pure bending and obtained a bending moment—curvature relationship. But
this model did not take into account the dimensional Poisson effect. Moreover, the material orientation of
the model varies from carbon nanotubes, which are axially symmetric. A beam model with round cross-
section of three dimensions have constructed, and a bending moment—curvature relationship, which is more
likely to be the truly bending constitution of carbon nanotubes have obtained by using an advanced finite
element analysis package, ABAQUS. Thus the effective bending moduli for carbon nanotubes with different
cross-sections are obtained by means of using a bi-linear theory. The result carried out in the paper is
consistent with the measuring result in reference (Poncharal et al., 1999).

2. Numerical simulation of rippling deformation mode

Based on three structures of carbon nanotubes arising from the folding of one layer or more layers of
graphite to form a cylinder composed of carbon hexagons (Rao et al., 2001), we can utilize the stress—strain
relationship of graphite to express the constitution of carbon nanotubes with an appropriate orientation.
The experiments up to now do indicate that the axial elasticity modulus of carbon nanotubes is close to the
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elasticity modulus along the basal plane of graphite (Krishnan et al., 1998). To better express the material’s
main direction of carbon nanotubes, the constitution in a cylindrical coordinate system is represented as
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In experiments the length-to-diameter ratio of carbon nanotubes is about 500. The loading condition is a
concentrate force exerted at the free end of cantilever beam. The shearing effect for this kind of beam can be
omitted based on solid mechanics theory, which belongs to purely bending model. Once the bending
moment—curvature relationship for purely bending, which contains all the information of non-linearity, is
obtained, the deformation and vibration of the cantilever beams can be analyzed without having to conduct
an FEM simulation for each cantilever beam. Even so, because of the small size of elements aiming to
characterize the rippling deformation, non-linear geometrical deformation and the time-consuming of
computation, the length-to-diameter ratio should be kept to a suitable value. But there is a lowest limit,
because the period of the rippling, namely, the length of each wave, is relation to the cross-sectional
dimensions. This will vary to accommodate to ratio D/L, where D and L represent, respectively, the outer
radius and the length of nanotubes, and affect the bending moment—curvature relationship. A ratio to
contain enough waves in the deformation portion of beam should be determined, so that the length of the
beam can be approximately taken as an integer multiple of the rippling period. Referring to the rippling
period observed with high-resolution TEM (Poncharal et al., 1999) and the result of previous work (Zheng
and Jiang, 2001), a rectangular cross-beam of length-to-height ratio L/4 of 10:1 is chosen to simulate the
rippling deformation of carbon nanotubes. In the paper it is assumed that carbon nanotubes with various
inner radii d; can be simulated using hollow cylindrical model or solid cylindrical model with the equative
outer radius D.

The characteristic length of the bending portion of the beam between the two simply supported con-
straints is taken as L, and the bending curvature is taken as x.

Using the same aspect ratio (L/D = 500) as that of experimental samples (Poncharal et al., 1999) to
performing the finite element analysis is extremely challenging because the elements in finite element mesh
must have dimensions significantly smaller than the spatial period of rippling. However, theoretically,
under the pure bending condition the bending moment on each cross-section is the same and the beam’s
neutral axis has a constant curvature. Thus, a beam with smaller aspect ratio (L/D < 500) can be used to
simulate the rippling deformation of the beam under the pure bending condition. It should be pointed out
that in the FEM numerical simulation the exact application of the boundary condition of the beam sub-
jected to pure bending is very important, due to the rotation and the changing unknown stress distribution
of the ending sections. An approach is to construct a four-point bending beam, as shown in Fig. 1.
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Fig. 1. Three-dimensional FEM calculating models for purely bending nanotubes.
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A commercial finite element code ABAQUS is used to simulate the rippling formation of bent nanotubes. It
can automatically choose proper loading increments and converge criteria in a non-linear analysis.

Fig. 2(a) shows the undeformed mesh of solid cylindrical model for carbon nanotubes, Fig. 2(b) shows
the configuration of a simulated this carbon nanotubes bent with the rippling deformation which is similar
to overall view of a bending carbon nanotubes with ripples carried out by means of a measuring method
(Poncharal et al., 1999).

In order to minimize the sensitivity of numerical solution to the characteristic length of the selected
purely bending portion by varying the aspect ratio we plot in Fig. 3 the bending moment M versus the
bending curvature x at each loading step for the four-point bending solid cylinder with the length-to-
diameter ratios L/D = 10, and 20. It is seen from Fig. 3 that the calculating results for the two different
dimensions of purely bending portion of the four-point bending solid cylinder models are approximate
coincidence so that in the following finite element simulation the length-to-diameter ratios L/D of purely
bending portion may be taken as 10 in order to decrease the calculating time.

From Fig. 3, it is seen that the bending stiffness of a carbon nanotube sharply reduces from the EI value
as it is bent into the rippling mode. Because the reduced bending stiffness doses not change significantly, the
bending moment—curvature relationship can be simplified as a bi-linear function.

Fitting the discrete data in Fig. 3 with bi-linear functions gives
:{EM: as 0 <k <1.36% (2)
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Fig. 2. FEM model of carbon nanotubes and the rippling configuration. (a) The undeformed mesh of the purely bending part, (b) The
rippling deformed shape of the bent carbon nanotubes from FEM simulation.
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Fig. 3. Two results derived from different ratios to D/L, where (M) represents L/D = 10, (@) represents L/D = 20.

with e; = 0.0684, e, = 0.898 x 10° Nm, where £ = 1.02 x 1012 GPa is the axial engineering elastic constant
derived from the Young’s modulus of the graphite base plane.

In fact, the dimensionless curvature Dk has an obvious physical meaning which expresses two times the
maximum normal strain &,,, when the beam is bent in the linear mode. So, when non-linear mode appear
the above function gives the critical strain

ter = 0.0136D)2 (2b)

3. A bending experiment method of nanotubes

Based on that all the electrostatic force is exerted at the free end of the carbon nanotubes (Poncharal
et al., 1999), the load applied on the cantilever beam is written as

F(x,t) = P(t)3(x — L) 3)

where a concentrate force P(¢) is exerted at the location x = L.

Because the surface work function of carbon nanotubes is different from that of the counter electrode,
they will interact and bear a certain amount of static charge even when no voltage is applied between the
carbon nanotubes and the counter electrode. Suppose the net charge of carbon nanotubes is gy, which
neutralizes the difference of the surface work function. This net charge can be eliminated by applying a bias
voltage —AV, with AV = ¢, /«, where « is the proportional constant between the induced charge (with the
exclusion of ¢q) and the applied voltage. When a time dependent voltage V() = V; + V3 cos(wt) is applied,
the charge at the free end of the carbon nanotubes is ¢ = gy + oV (¢) = «[AV + V(¢)], and the intensity of the
electric field there is E = S[AV 4 V(¢)], so the electric force exerted on the carbon nanotubes is
P(t) = Eq = af[AV + V(£)], where o and  are proportional constants relevant to the carbon nanotubes
under investigation. Substituting the expression of V' (¢) into that function, gives
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P(t) = aB[AV + V. + Vs cos(wr)]’
= aB[(AV + V,)* + 2(AV + V) Vycos(wr) + (1/2)VE cos(2wt) + (1/2) V] (4)

From the above expression, it can be seen that static load Py and periodical load P (¢) in Eq. (4) are,
respectively, expressed as

Py = of[(AV + V)" + (1/2)1;] (5a)
Pi(t) = af[2(AV + V) Vacos(wt) + (1/2) V42 cos(2wt)] (5b)

In a linear vibration the stimulation with frequency being w and 2w in P;(¢) are analyzed respectively, and
their response are superimposed. Since (AV + ¥;)/Vy > 1 in the experiment, there are

Py =~ af[(AV + V)] (6a)

Py(t) ~ af[2(AV + V;)Vycos(at)] (6b)

where Py > Pi(¢).

The beam undergoes a static deformation of bending when P, is exerted on it, and part of the beam has
entered the rippling mode. P;(¢) cause the beam to vibrate. Suppose that the interface between the rippling
and un-rippling parts is at x = L;, where L; is determined by
DPR(L—L)

Emax = 2 T Ecr (7)

where D expresses the diameter of carbon nanotubes, and the critical strain ¢ for rippling is given in Eq.
(2b). Solving Eq. (7) gives

e ET
L1 =L—- DPO (83)
2e.ET
L, ==X 8b
7 DR (8b)

where L, =L — L,

The rippling part of the beam appears in 0 < x < L, and the un-rippling part appears in L; < x < L. These
two parts will observe ‘%’ = e El and %—1‘: = EI respectively. Because P (¢) cause the whole beam to vibrate,
the interface between the two parts oscillates around x = L;, which means that the lengths of the two parts
appears in fluctuating. However, because the dynamic deformation is small compare to the static defor-
mation, and the effects of positive fluctuation and negative fluctuation in a period on the frequency of
vibration can counteract to some extent, the vibration analysis for a beam with two parts of constant
lengths having different bending stiffness can be adopted.

According to the experiment (Poncharal et al., 1999), it is assumed that the ratio of the displacement of
the free end of the cantilever beam caused by Py (Wmax) to the beam length L is a constant
o )
Considering that Cr approximately equals 30% (Poncharal et al., 1999) and from material’s mechanics
theory the displacement of the free end of the cantilever beam is given by

R[1 /L O\ L
i = — | — | L+ L2, + L2 ) + =2 10
s EJM<3+‘2 172 3 (10)
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Solving Eq. (7) yields
2FEI¢e,,

Py = 11
*” DL, (11)
Substituting Eq. (1) into Eq. (10), and dividing both sides of the equation by L, gives
Wimax 26 [ 1 [ L3 L? e, [1( L} L2 LL L2
max _ ber | B[ L L2 LL T o e | 1 ~1 172 2
L DL[ (3L2+ + 2) + 3] D/LL1 <3L2L2+L2+ r )i
2t | 1 i (1—k)? | 26 3K+ 3k +o (1 —k)
= P k(L —k === =C 12
DJL | e (3(1_k)+ K )>+ 3 D/L 3er(1— k) P (12)
L2 _ Lk

where
3
The above equatlon indicates that the quotient of the rippling part in the model £ = L;/L is only
determined by the geometric parameter of the beam D/L. Once the value of D/L is given, k in the above
equation can be easily obtained.

4. Bending vibration theory of beam

According to the bi-linear constitution relationship simulated shown in Fig. 3 and the vibration theory
of beam the bending vibration equation of beam is separated into two parts

e\E Ot (x, z)+ Aa wi(x, 1) —0 (0<x<L) (13a)
O*x 0%t
4
) ) O pgse—1) (Li<x<) (130)
x

where subscriptions 1 and 2 represent the bending equilibrium equations of the rippling and un-rippling
parts of the beam. Boundary conditions and continuous conditions of the cantilever beam are, respectively,

wy=0w /ox=0, atx=0

62W2 - 63W2

I 9" atx=1L
02%x 03x ’ o

wp =w,, Ow;/0x = 0w,/0x

62w1 62W2 63w1 63W2

Px  x ox  ox) atx=L (14
Assuming the homogencous solutions of Eq. (13) are, respectively, written as

wi(x, 1) = g1 (x)q1(1)  (0<x<Ly) (15a)

W, 1) = $(¥)qa(t) (L<x<L) (15b)
where

¢,(x) = C; sinh(f,x) + C; cosh(f,x) + C; cos(f;x) + Cysin(f;x) (16)

expresses the mode function of rippling deformation, and
¢,(x) = Cssinh(f,x) + Cg cosh(f,x) + C; cos(f,x) 4+ Cg sin(f,x) (17)
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expresses the mode function of non-rippling deformation. In the above formula,

A

e EI EI

Assume that a new coordinate system is expressed as
xi=x (0<x<L;and 0<x <L)

pr = 2 p= e (18)

X2 Z)C—Ll (L]Q)CQL and 0<x2§L2) (19)

Under the coordinate system (19), and substituting Eq. (15) into the boundary condition and the contin-
uous condition (14) yields

d’l(Ll) = ¢2(0>7 ¢,1 (Ll) = ¢/(0)2
e1dy (L) = ¢5(0), eidy'(L1) = $5(0) (20)
$1(0) = ¢1(0) =0,  ¢5(Lo) = ¢ (L) =0

Substituting Eqgs. (16) and (17) into Eq. (20) leads to a set of algebraic equations.

C2 + C3 =0

Ci+Ci=0

Cssh ,L, + Csch 5,1, — C7cos ff,Lr — Cgsin ff,Lr, =0

Csch 3,1, + Cgsh 5,1, + Cqsin f,L, — Cgcos ff,Lr, =0

Cish Ly + Cych 1Ly + Cycos Ly + Cysin §,L = Co + C;

B (Cich BiLy + Cosh By Ly — Cysin By Ly + Cacos B1Ly) = B,(Cs + Cs)
efi(CishBiL; + Coch B Ly — Cycos BiL; — Cysin BL,) = f3(Cs — Cy)
e1Bi(Cich ByLy + Cosh Ly + Cysin fiL; — Cycos BiLy) = B3(Cs — Cs)

In order to get non-zero solutions for the above equation, making the coefficient matrix of Eq. (21) be zero,
gives

(1)

[cosh(X) cosh(X) — 1][cosh(Y) cos(Y) — 1] + e;[cosh(X) cosh(X) + 1][cosh(Y) cos(Y) + 1]
+ e% [cosh(Y)sin(Y) + sinh(Y) cos(Y)][sinh(X) cos(X) — cosh(X) sin(X)] + e%1 [cosh(X) sin(X)
+ sinh(X) cos(X)][sinh(Y) cos(Y) — cosh(Y) sin(Y)] — Ze%1 sinh(X) sin(X) sinh(Y) sin(Y)
=0 (22)

where X = f§,L;, Y = f,L, . It is noted that Eq. (22) involves two dimensionless undetermined parameters,
X and Y. From Eq. (8) and Eq. (18) we have

_ BLi_ 3CeD/L — 2,

= = 23

BrLa 2£Crei/4 (23)
Substituting Eq. (23) into Eq. (22), the minimum real root of Eq. (22) is given by

N = Py ls (24)

Substituting f3,, into Eq. (18), the basic frequency of the cantilever beam is written as

s [Eerl Y} [Eel
o1 =P \/ pd ~ 12\ pa (25)

where E.; expresses an equivalent bending modulus.
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From a linear vibration theory, the basic frequency of the cantilever beam may be written as

1712 2
,_ (BiL)” |EI 1875 |EI
O1= e pA L2 pA (26)

where f3,L is the minimum real root of the characteristic equation which is expressed as

cos(f,L)cosh(f,L)+1=0 (27)
Using Egs. (25) and (26), we have

Eaq (o\* _( ¥ 3CeD/LN? o

E \ o 1.875  2¢y

From Egs. (8a) and (2b), when non-rippling deformation appears on the beam (L; = 0), we have

2e;  2x0.0136D/2
D/L = =————F——=0.0151D 2
/ 3Ck 3 x 30% 0.015 (29)

When D/L < 0.0151D, the beam completely appears in the linear M—« relationship. Substituting a series of
values D/L > 0.0151D into Eq. (22) gives the relation between the effective modulus E.r and D/L shown as
the curve A in Fig. 4.

On the other hand, utilizing Microcal Origin Code, we simulate the curve A in Fig. 4 with a simple
function describing relationship between the effective modulus Eer and D/L when rippling deformation
appear on the bending beam, which is given by

Eefp 5% 1073
= 0.05949 + 30
E (2-0.01305)""* (0
1.0 - .
| . A:—=— (D)
08 ‘ B: e (hiL)
L @
Ty 1]
W o6 |ﬂ
o
0.4 - ‘.
" 'o‘.
]
0.2 \l ...'1 oo ® ®
kiIllkl—l—l n ]
0.0 +————7—

T LUV | v LI T I | L | ¥ LI L
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

D/L or h/L

Fig. 4. Curve 4 expresses the relationship between diameter-to-length D/L and effective bending modulus E./E of carbon nanotubes
from three-dimension solid circle section model. Curve B expresses the relationship between height-to-length //L and effective bending
modulus Er/E of carbon nanotubes from two-dimension rectangular section beam.
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5. Conclusions

From the curve 4 in Fig. 4, it is seen that when the length of the carbon nanotubes is a constant, its
effective bending modulus carried out according to the bi-linear deformation theory does decrease with
the diameter of the carbon nanotubes increasing. The distribution of the data points from the curve 4 in
Fig. 4 is closed to that of the E.r/E — D graph derived from experiment in reference (Poncharal et al.,
1999).

Fig. 4 shows a comparison between the E.r/E — D/L relationship in this paper and the result from the
FEM model of which is a square-cross-sectioned beam with the height being % in reference (Zheng and
Jiang, 2001). In the comparison, to make the cross-sections of the two models have an equal inertial
moment a value to the diameter of circle-sectioned beam in the paper is given by

4 3
b (31)
64 12

It is seen from Fig. 4 that although the two curves are similar, the result in this paper gives a lower value
for Eer/E with D/L increasing, which is more closer the E.q/E — D graph derived from experiment
(Poncharal et al., 1999) than the two-dimensional model (Zheng and Jiang, 2001). Thus, it is concluded that
the three-dimensional model used in this paper is more suitable to simulate the effective bending modulus of
carbon nanotubes with rippling deformation than the two-dimensional model in reference (Zheng and
Jiang, 2001).

In order to further describe the effect of FEM model on numerical simulation of the effective bending
modulus of carbon nanotubes with rippling deformation, a hollow circle section is used to simulate
the effective bending modulus of carbon nanotubes with rippling deformation. Similar to Eq. (31), the
geometrical sizes of hollow circle section is given by

pt—a*=p* (32)
1.0 4 [ ]
| A:—=—(D/L)
" 0.8 B:—e—(D,/L)
~ |
L
06
0.4
\..
02- ] "
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L e HNL A R s R s B s B B B S B e p |
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D/L or D,/L

Fig. 5. Curve 4 expresses the relationship between diameter-to-length D/L and effective bending modulus E;/E of carbon nanotubes
from three-dimension solid circle section model. Curve B expresses the relationship between height-to-length 4/L and effective bending
modulus E./E of carbon nanotubes from three-dimension hollow circle section model.
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where D presents the outer radii of the solid circle section, D; presents the out radii of the hollow circle
section and d = D, /2 presents the internal radii of the hollow circle section.

Fig. 5 shows the distributions of the effective bending modulus of carbon nanotubes with rippling
deformation for two kinds of sections model with identical dimensions and inertial moment. It is seen that
the distributions of the two effective bending moduli of carbon nanotubes with rippling are approach. It
further proves that the circle section used to simulate the effective bending modulus of carbon nanotubes is
suitable.
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